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1. RESEARCH GOALS AND OBJECTIVES

Actuality and importance of the research topic. The notion of universal algebra has been
introduced in the book of Alfred North Whitehead "A Treatise on Universal Algebra", published
in 1898 [45]. Between 1935 and 1950, Birkhoff introduced varieties and quasivarities of universal
algebras, free algebras, universal algebra congruence, subalgebra lattice, homomorphism theorems.
Due to the second world war, the results published by Anatol Maltsev in the years 1938 – 1946
were not noted until the early 50s of the last century. Alfred Tarski’s plenary lecture in 1950 at the
Cambridge InternationalMathematics Congress inaugurated a new era. After 1950, various aspects
of model theory were studied, with uncommon applications in mathematical logic, language theory,
automata theory, with contribution of the following mathematicians: A. Robinson, A. Tarski, G.
Birkhoff, C.C. Chang, L. Henkin, S. C. Kleene, B. Jonsson, A. Church, S. Eilenberg, S. MacLane,
R. Lyndon, A. I. Maltsev, V. I. Arnautov, M. A. Arbib, V. M. Gluşkov, N. Chomsky, M. Minsky, S.
Ginsburg, D. Scott, D. A. Huffman, E. Marczewski, J. Mycielski, P. J. Higgins, B. I. Plotkin, Yu. I.
Manin, S. Marcus, A. G. Kurosh, V. I. Glivenko, V. D. Belousov, A. P. Ershov, O. B. Lupanov, A.
D. Wallace and others (see [3, 8, 6, 10, 17, 20, 21, 24, 28, 29, 32, 34, 44]). Various applications of
algebra in information analysis and image processing were explored by S. Cojocaru, C. Gaindric, V.
Shcherbacov, P. Syrbu, V. Izbash and others [18, 23, 40, 43]. In solving many problems related to
information analysis (processing, digitization, comparison, classification), it became necessary to
study invariant metrics and topologies on free universal algebras. The study of topological algebras
was initiated with the study of Lie groups, topological groups and topological linear spaces.

Different types of distances were examined by M. Frechet, V. Niemytzcki, P.S. Alexandroff,
A.V. Arhangelskii, M.M. Choban, R.W. Heath, P. Kenderov, S. Nedev, W.A. Wilson (see [22, 2, 5,
27, 4, 15, 36]). In the class of distances, quasi-metrics are highlighted by the fact that they are not
symmetric but satisfy the condition of the axiom of the triangle inequality. Discrete quasi-metrics
bring us to the concept of digital space and more general to Alexandroff space. Hamming [26],
Graev [25] and Levenshtein [31] research work bring us to the need to developmethods of extension
of distances on the alphabet A over the free monoid L(A). We mention that it is important for
the extension to be invariant. This problem is important and remained unsolved until now for any
quasivariety of topological monoids.

These facts determine the actuality and importance of the research topic.
The thesis presents theoretical results of the study of distances on abstract algebraic structures.

The applicative part of the research can be used in information theory, where it is necessary to
define the measure similarity between data and the efficiency of data representation. These notions,
in their turn, can be obtained by applying distance between the information sequences.

The research goals and objectives. The goal of the scientific research is to study the
problem of distances on free monoids. Some of the goals posed are to study the properties of
these distances on the free monoid L(A), determine if there exists any relationship between them
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and to find applications of the obtained results. To achieve this goal, the following objectives were
defined:

• determine the conditions of extension of given quasi-metric ρ on A and any quasivariety V

of topological monoids to an invariant quasi-metric ρ∗ on the free monoid Fa(A,V);

• elaboration of an effective method for extending the quasi-metric ρ on free monoids;

• determine the conditions of the existence of invariant topologies on free monoid Fa(A,V)

which are extensions of the given topology on A;

• establish relations between Hamming, Levenshtein and Graev distances;

• development of efficient representations and decompositions of pairs of strings;

• implementation of innovative algorithms for solving text sequences problems;

• implementation of algorithms for construction of weighted means and bisector sets of a given
pair of strings;

• describe image processing from the topological point of view;

• analyze properties of digital topologies on the discrete line.

The goals set in the beginning of the research, once achieved, leads to important theoretical
results. This way, the notion of the parallel decompositions of a pair of strings was introduced.
Based on that, the extended research goals covered the study of the measure of proper similarity
of a pair of strings, the construction algorithms of the weighted means and bisector sets of pairs
of strings, as well as the examination and solution to the question of the convexity property of the
mentioned sets.

2. SCIENTIFIC RESEARCHMETHODOLOGY

The present study is conducted within the area of the algebraic and topological theories, and
the methodology used is based on the application of methods of monoids theory, distance spaces,
language theory, algorithms theory and the informational systems theory. Using the scientific
research methodology, the work was partitioned into the following stages: problem identification,
hypothesis formulation, hypothesis investigation and analysis, conclusions of the established results.

Hypothesis formulation is based on the goals and objectives of the research. One of the main
hypothesis, which influenced the discovery of the results following from it, was the existence of the
extension of a quasi-metric ρ on free monoids. This way, some of the early stage research results
comprise of effective methods of distance extension on free monoids, which lead to the possibility
of introducing the concept of parallel decomposition of strings.

Hypothesis investigation and analysis were conducted within the scope of the fundamental
scientific research methodology. During this stage it was established that for any non-Burnside
quasivariety V and any quasi-metric ρ on a set X with basepoint pX on free monoid Fa(X,V)
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there exists a unique stable quasi-metric ρ̂ with the Properties 2.4.1 through 2.4.10, which are
summarized as a general result in Theorem 2.4.1.

The thesis scientific novelty and originality consist in its new theoretical results which are
published in peer-reviewed scientific journals. Research results comprise of effective methods of
distance extension on free monoids, which lead to the possibility of introducing the concept of
parallel decomposition of strings. This has allowed the development of the concepts of efficiency
and similarity of the information sequences, as well as the construction of the sets of weighted
mean and bisector of strings. The degree of the novelty and originality is represented by:

• method of quasi-metric extension on free monoid Fa(X,V);

• study of the digital and Alexandroff spaces;

• presented solutions for Maltsev problems for quasivariaties of topological monoids;

• established relations between Hamming, Graev and Levenshtein distances on free monoids;

• introduction of the concept of efficiency of representation;

• introduction of the concept of the optimal parallel decompositions for strings from the free
monoids;

• algorithms implemented for weighted mean and bisector construction for pairs of strings;

• proof of the non-convexity of the informational segment;

• introduction of the notion of the symmetric topology on the digital line;

• proof of the uniqueness of Khalimsky topology as minimal digital topology;

• elaboration of the digital image processing algorithm from the topological perspective, ap-
plicable in the digital space.

The important scientific problem solved in the research is the development of methods for
constructing and studying distances extension over free monoids, which contribute to obtaining
effective methods of information representation, applicable to solving different distance problems
such as sequence alignment, proper similarity of a pair of strings, construction of weighted means
and bisectors of a pair of strings.

The theoretical significance is determined by obtaining new results regarding the establish-
ment of the conditions of existence of the extension of distances on free monoids, that permit the
construction of distinct invariant topologies on free monoids. The elaborated methods have allowed
to approach the problems related to information sequences from a new point of view. Additionally,
the theoretical results permit the study of the digital line, and the minimality property of Khalimsky
topology.

The applicative value of the paper consists in the use of the obtained theoretical results in
the study of symmetric topologies on the digital line, imaging processing and construction of the
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centroid of a set of strings. Presented methods build larger sets of elements, using the method of
optimal parallel decompositons.

Approval of scientific results. The scientific results obtained were presented at national
and international scientific conferences, and were published in peer-reviewed journals. The main
results included in the thesis were presented at the following conferences scientific:

• Scattered and Digital Topologies in Information Sciences. Plenary talk at the Conference
of the Romanian Society of Applied and Industrial Mathematics ROMAI, CAIM 2018,
Chisinau, Moldova, 20-23 September 2018;

• Scattered and Digital Topologies in Image Processing. Conference on Mathematical Foun-
dations of Informatics, MFOI 2018, Chisinau, Moldova, 2-6 July 2018;

• About Non-Convexity of the Weighted Mean of a Pair of Strings. International Conference
“Contemporary Trends in Science Development: Visions of Young Researchers”,
Academy of Sciences of Moldova, Chisinau, Moldova, 15 June 2018;

• On the Midset of Pairs of Strings. International Conference on Mathematics, Informatics and
Information Technologies, MITI 2018, Balti, Moldova, 19-21 April 2018;

• Measures of Similarity on Monoids of Strings. Conference on Mathematical Foundations of
Informatics, MFOI 2017, Chisinau, Moldova, 9-11 Nov 2017;

• Parallel Decompositions of Pairs of Strings and Their Applications. Conference on Applied
and Industrial Mathematics, Iasi, Romania, 14-17 Sept 2017;

• On the Bisector of a Pair of Strings. The 4th Conference of Mathematical Society of the
Republic of Moldova, dedicated to the centenary of Vladimir Andrunachievici (1917-1997)
CMSM4, Chisinau, Moldova, 28 June - 2 July 2017;

• Distances on Monoids of Strings and Their Applications. Conference on Mathematical
Foundations of Informatics, MFOI 2016, Chisinau, Moldova, 25-31 July 2016;

• Invariant Distances on Free Semigroups and Their Applications. The 20th Annual Confer-
ence of the Mathematical Sciences Society of Romania, 19-22 May 2016;

Publications on the topic of thesis research. The results obtained in the thesis are published
in 20 papers scientific articles (see [46]–[65]): 7 articles in journals (see [47, 49, 56, 60, 62, 63, 64]),
13 papers in international conferences (see [46, 48, 50, 51, 52, 54, 53, 55, 57, 58, 59, 61, 65]); 8
publications by single author (see [46]–[53]), including 2 articles in peer-reviewed journals (see
[47, 49]). The total volume of publications is 6.4 sheets of author.

Thesis structure and volume: the thesis is written in English and consists of: introduction,
four chapters, general conclusions and recommendations, 192 bibliography titles. The total volume
of the thesis is 128 pages, out of which 122 main text pages.
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3. SYNTHESIS OF CHAPTERS

In the introduction, the actuality and importance of the research topic are formulated. In
addition, the research goals, objectives, the scientific novelty and originality are stated. The
scientific problem under study is presented with the emphasis on the importance of the theoretical
and applicative value of the work. A brief analysis of the problems and publications on the thesis
topic is given. This sections concludes with a summary of the content of the paper.

The first chapter, Current situation in the field of quasi-metric space theory and their
applications in algebra and information theory, has an introductory character and contains
a survey of the most important results related to the purpose and objectives of the Thesis, the
directions of the investigation. It defines and classifies distances, distance spaces, informational
systems of Scott-Ershov type, universal topological algebras, spaces of strings.

For solving stated problem it is important to study the following particular problems:

1. To determine the conditions of extension of given quasi-metric ρ on A and any quasivariety
V to a invariant quasi-metric ρ∗ on the free monoid Fa(A,V).

2. To propose the algorithms of the calculation of the distance ρ∗(a, b) between two information
sequences a, b ∈ L(A).

3. To determine the relations between topologo-geometrical properties of spaces (A, ρ) and
(L(A), ρ∗).

4. To propose methods of construction of weighted means and bisector sets of a given pair of
strings.

5. To determine topologo-geometrical properties which are important in the analysis of infor-
mation and image processing.

Maltsev problems are formulated for free monoids, which were posed in 1957 [33]:
First Maltsev’s Problem: Under which conditions the mapping vX is an embedding?
Second Maltsev’s Problem: Under which conditions the homomorphism wX is a continuous

isomorphism?
For complete regular spaces X the Maltsev Problems were solved affirmatively by S. Swier-

czkowski [42] in the case of discrete signature E , and by M. M. Choban and S. S. Dumitrashcu for
any signature [19, 14].

At the end of this chapter, the research problem is formulated, the methods of solving it are
identified, the goals and objectives of the research are established.

In second chapter, Extension of quasi-metrics on free topological monoids, quasivarieties
of topological monoids are studied and new methods of quasi-metrics extension are elaborated.
Chapter begins with the introduction into free topological monoids and construction of the abstract
free monoid.
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Any topological space X is considered to be a Kolmogorov space, i.e. a T0-space: for any
two distinct points x, y ∈ X there exists an open subset U of X such that U ∩ {x, y} is a singleton
set. A class V of topological monoids is called a quasivariety of monoids if: (1) the class V is
multiplicative; (2) if G ∈ V and A is a submonoid of G, then A ∈ V; (3) every space G ∈ V is
a T0-space. A free monoid of a space X in a class V is a topological monoid F(X,V) with the
properties: X ⊆ F(X,V) ∈ V and pX is the unity of F(X,V), the set X generates the monoid
F(X,V), and for any continuous mapping f : X −→ G ∈ V, where f (pX) = e, there exists a unique
continuous homomorphism f̄ : F(X,V) −→ G such that f = f̄ |X . An abstract free monoid of a
space X in a classV is a topological monoid Fa(X,V)with the properties: X is a subset of Fa(X,V),
Fa(X,V) ∈ V and pX is the unity of Fa(X,V), the set X generates the monoid Fa(X,V), and for
any mapping f : X −→ G ∈ V, where f (pX) = e, there exists a unique continuous homomorphism
f̂ : Fa(X,V) −→ G such that f = f̂ |X .

By the Kakutani method it is proved that:

Theorem 2.1.1. Let V be a non-trivial quasivariety of topological monoids. Then for each space
X the following assertions are equivalent:

1. There exists G ∈ V such that X is a subspace of G and pX is the neutral element in G.
2. For the space X there exists the unique free topological monoid F(X,V).

We continue by highlighting the problems addressed in this section.
Problem 2.1.1. LetV be a non-trivial quasivariety of topological monoids. Under which conditions
for a space X there exists the free topological monoid F(X,V)?

Fix a space X for which there exists the free topological monoid F(X,V). Then there exists a
unique continuous homomorphism πX : Fa(X,V) −→ F(X,V) such that πX(x) = x for each x ∈ X .
The monoid F(X,V) is called abstract free if πX is a continuous isomorphism.
Problem 2.1.2. LetV be a non-trivial quasivariety of topological monoids. Under which conditions
for a space X there exists the free topological monoid F(X,V), which is abstract free?

The Problems 2.1.1 and 2.1.2 are important in the theory of universal algebras with topologies
(see [33, 14, 15, 12, 13, 16]). These problems for varieties of topological algebras were posed by
A. I. Maltsev ([33], see Maltsev’s problems in thesis section 1.6).

The following theorem’s proof relies on the result stated in previous theorem 2.1.1.

Theorem 2.1.2. Let V be a non-trivial quasivariety of topological monoids and there exists H ∈ V

and point b ∈ H such that e , b, and E = {e, b} is a discrete subspace of H. Then for each
zero-dimensional space X there exists the unique free topological monoid F(X,V).

Example 2.1.1 illustrates that not for any non-trivial quasivariety V and any T0-space X there exists
F(X,V).

Letω = {0, 1, 2, ...} . A quasivarietyV of topologicalmonoids is called aBurnside quasivariety
if there exist two minimal numbers p = p(V), q = q(V) ∈ ω such that 0 ≤ q < p and xp = xq for
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all x, y ∈ G ∈ V. In this case, any G ∈ V is a (p, q)-periodic monoid of the exponent (p, q). If q =
0, then any monoid G ∈ V is a periodic monoid of the exponent p and xp = e for each x ∈ G ∈ V.
The trivial quasivariety is considered Burnside of the exponent (0, 1).

The following theorem solves Problem 2.1.1 for complete non-Burnside quasivarieties of
topological monoids.

Theorem 2.3.3. Let V be a complete non-Burnside quasivariety of topological monoids. Then for
each T0-space X there exists the free topological monoid F(X,V).

The following theorem solves Problem 2.1.1 for complete non-trivial quasivarieties of topo-
logical monoids.

Theorem 2.3.4. Let V be a complete non-trivial quasivariety of topological monoids. Then for
each completely regular space X there exists the free topological monoid F(X,V).

Fix a non-trivial complete quasivariety V of topological monoids. Consider a non-empty
set X with a fixed point e ∈ X . We assume that e ∈ X ⊆ Fa(X,V) and e is the identity of
the monoid Fa(X,V). Let ρ be a pseudo-quasi-metric on the set X . Denote by Q(ρ) the set
of all stable pseudo-quasi-metrics d on Fa(X,V) for which d(x, y) ≤ ρ(x, y) for all x, y ∈ X .
The set Q(ρ) is non-empty, since it contains the trivial pseudo-quasi-metric d(x, y) = 0 for all
x, y ∈ Fa(X,V). For all a, b ∈ Fa(X,V) we put ρ̂(a, b) = sup{d(a, b) : d ∈ Q(ρ)}. We say
that ρ̂ is the maximal stable extension of ρ on Fa(X,V). For any a, b ∈ Fa(X,V) we put ρ̄ =
in f {Σ{ρ(xi, yi) : i ≤ n} : n ∈ N, x1, y1, x2, y2, ..., xn, yn ∈ X, a = x1x2...xn, b = y1y2...yn} and
ρ∗(a, b) = in f { ρ̄(a, z1) +... + ρ̄(zi, zi+1) + ... + ρ̄(zn, b) : n ∈ N, z1, z2, ..., zn ∈ Fa(X,V)}.

One of the main results of the thesis is the following theorem.

Theorem 2.4.1. Let ρ be a pseudo-quasi-metric on X , Y be a subspace of X and e ∈ Y . Denote
by M(Y ) = Fa(Y,V) the submonoid of the monoid Fa(X,V) generated by the set Y and by dY the
extension of ρ̂|Y on M(Y ) of the pseudo-quasi-metric ρY on Y , where ρY (y, z) = ρ(y, z) for all
y, z ∈ Y . Then:

1. dY (a, b) = ρ̂(a, b) for all a, b ∈ M(Y ).

2. If V is a non-Burnside quasivariety, then ρ̄(x, y) = ρ(x, y) for all x, y ∈ X .

3. If ρ is a (strong) quasi-metric on Y , then ρ̂ is a (strong) quasi-metric on M(Y ).

4. If ρ is a metric on Y , then ρ̂ is a metric on M(Y ).

5. If a, b ∈ Fa(Y,V) are distinct points and ρ is a quasi-metric on Sup(a, b), then ρ̂(a, b) +
ρ̂(b, a) > 0.

6. If a, b ∈ Fa(Y,V) are distinct points and ρ is a strong quasi-metric on Sup(a, b), then
ρ̂(a, b) > 0 and ρ̂(b, a) > 0.
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7. For any a, b ∈ Fa(Y,V) there exist n ∈ N, x1, x2, ..., xn ∈ Sup(a, a) and y1, y2, ..., yn ∈

Sup(b, b) such that a = x1x2...xn, b = y1y2...yn, n ≤ l(a) + l(b) and ρ̄(a, b) = Σ{ρ(xi, yi) :
i ≤ n}.

8. ρ̂ = ρ̄ = ρ∗.

In the class of free monoids, theorem 2.4.1 permits to solve the first and second Maltsev
problems, which were formulated for universal algebras in 1957 [33].

The quasivariety of topological monoids V is rigid if for any space X , any word a ∈ F(X,V),
any point c ∈ X \ {px} and any representation ac = x1x2...xn, where x1, x2, ..., xn ∈ X , there exists
m ≤ n such that xm = c and a = x1x2...xm−1. In this case xi = pX = e for each i > m.

The variety of all topological monoids is rigid.

Theorem 2.5.1. Let V be a non-Burnside rigid quasivariety of topological monoids, ρ be a quasi-
metric on a space X with basepoint pX and ρ(x, pX) = ρ(y, pX) for all x, y ∈ X \ {pX }, or ρ(pX, x)

= ρ(pX, y) for all x, y ∈ X \ {pX }. Then ρ∗(ac, bc) = ρ∗(ca, cb) = ρ∗(a, b) for all a, b, c ∈ F(X,V).

The following theorem improves Theorem 2.3.3 and solves Problem 2.1.2 for complete non-
Burnside quasivarieties of topological monoids.

Theorem 2.6.1. LetV be a non-trivial complete non-Burnside quasivariety of topological monoids.
Then:

1. For each T0-space X on the free monoid Fa(X,V) there exists a T0-topology T(qm) such
that:

– (Fa(X,V), T(qm)) ∈ V;
– X is a subspace of the space (Fa(X,V), T(qm));
– the topology T(qm) is generated by the family of all invariant pseudo-quasi-metrics on

Fa(X,V) which are continuous on X .
2. For each T0-space X the free topological monoid F(X,V) exists and is abstract free.
3. A space X is a T1-space if and only if spaces F(X,V) and (Fa(X,V), T(qm)) are T1-spaces.
4. A space X is functionally Hausdorff if and only if the spaces F(X,V) and (Fa(X,V), T(qm))

are functionally Hausdorff.

Results analogous to theorems 2.1.1 and 2.6.1 are obtained for semi-topological monoid
F(X,W) in theorems 2.7.1 and 2.7.2.

The second chapter ends with the discussion on topological digital spaces, and the results
summarized in Corollary 2.8.2, which follow fromCorollary 2.8.1 and Propositions 2.8.2 and 2.8.4.
Corollary 2.8.1. LetV be a non-trivial complete non-Burnside quasivariety of topological monoids.
Then for each space X the following assertions are equivalent:

1. F(X,V) is an Alexandroff space.
2. On a space F(X,V) there exists a quasi-metric with the natural values.
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3. X is an Alexandroff space.
Corollary 2.8.2. LetV be a non-trivial complete non-Burnside quasivariety of topological monoids.
Then for each space X the following assertions are equivalent:

1. F(X,V) is a topological digital space.
2. X is a topological digital space.
The results presented in this chapter successfully complement the works of mathematicians

in the domain of the distance extension on the abstract algebraic structures. The author’s work in
this chapter is published in the articles [57, 62] and serve as a base for research presented in the
next chapters.

In chapter 3, Measures of similarity on monoids of strings, it is proved that there are
invariant distances on the monoid L(A) of all strings closely related to Levenshtein and Hamming
distances. A distinct definition of the distance on L(A) is introduced, based on the Markov-Graev
method, proposed for free groups. In result, it is shown that for any quasi-metric d on alphabet A in
union with the empty string there exists a maximal invariant extension d∗ on the free monoid L(A).
This new approach allows to introduce parallel and semiparallel decompositions of two strings,
which are later used in subsection 3.3 to determine the efficiency and penalty factors in two strings
representations.

For any strings a, b ∈ L(A)we find the decompositions of the form a = v1u1v2u2 . . . vkukvk+1

and b = w1u1w2u2 . . .wkukwk+1, which can be represented as a = a1a2 . . . an, b = b1b2 . . . bn with
the following properties:

- some ai and b j may be empty strings, i.e. ai = ε, b j = ε;
- if ai = ε, then bi , ε, and if b j = ε, then a j , ε;
- if u1 = ε, then a = v1 and b = w1;
- if u1 , ε, then there exists a sequence 1 ≤ i1 ≤ j1 < i2 ≤ j2 < . . . < ik ≤ jk ≤ n such that:
u1 = ai1 . . . a j1 = bi1 . . . b j1 , u2 = ai2 . . . a j2 = bi2 . . . b j2 , uk = aik . . . a jk = bik . . . b jk ;
- if v1 = w1 = ε, then i1 = 1;
- if vk+1 = wk+1 = ε, then jk = n;
- if k ≥ 2, then for any i ∈ {2, . . . , k} we have vi , ε or wi , ε.
In this case l(u1) + l(u2) + . . . + l(uk) = |{i : ai = bi}|.
The above decompositions forms are called parallel decompositions of strings a and b

[55, 56, 57]. For any parallel decompositions a = v1u1 . . . vkukvk+1 and b = w1u1 . . .wkukwk+1

the number

E(v1u1 . . . vkukvk+1,w1u1 . . .wkukwk+1)

=
∑

i≤k+1
{max{l(vi), l(wi)}} = dH(x1x2 . . . xn, y1y2 . . . yn)

is called the efficiency of the given parallel decompositions. The number E(a, b) is equal to the min-
imum of efficiency values of all parallel decompositions of the strings a, b and is called the common

14



efficiency of the strings a,b. It is obvious that E(a, b) is well determined and E(a, b) = dG(a, b). We
say that the parallel decompositions a = v1u1v2u2 . . . vkukvk+1 and b = w1u1w2u2 . . .wkukwk+1

are optimal if the following equality holds:

E(v1u1v2u2 . . . vkukvk+1,w1u1w2u2 . . .wkukwk+1) = E(a, b).

This type of decompositions are associated with the problem of approximate string matching
[35]. If the decompositions a = v1u1 . . . vkukvk+1 and b = w1u1 . . .wkukwk+1 are optimal and
k ≥ 2, then we may consider that ui , ε for any i ≤ k.

Any parallel decompositions a = a1a2 . . . an = v1u1v2u2 . . . vkukvk+1 and b = b1b2 . . . bn =

w1u1w2u2 . . .wkukwk+1 generate a common sub-sequence u1u2 . . . uk . The number

m(a1a2 . . . an, b1b2 . . . bn) = l(u1) + l(u2) + . . . + l(uk)

is the measure of similarity of the decompositions [7, 37]. There exist parallel decompositions
a = v1u1v2u2 . . . vkukvk+1 and b = w1u1w2u2 . . .wkukwk+1 for which the measure of similarity
is maximal. The maximum value of the measure of similarity of all decompositions is denoted
by m∗(a, b). The maximum value of the measure of similarity of all optimal decompositions is
denoted by mω(a, b). We can note that mω(a, b) ≤ m∗(a, b). For any two parallel decompositions
a = a1a2 . . . an and b = b1b2 . . . bn as in [56], we define the penalty factors as

pr(a1a2 . . . an, b1b2 . . . bn) = |{i ≤ n : ai = ε}|, pl(a1a2 . . . an, b1b2 . . . bn) = |{ j ≤ n : b j = ε}|,
p(a1a2 . . . an, b1b2 . . . bn) = |{i ≤ n : ai = ε}| + |{ j ≤ n : b j = ε}|

= pr(a1a2 . . . an, b1b2 . . . bn) + pl(a1a2 . . . an, b1b2 . . . bn)

and

Mr(a1a2 . . . an, b1b2 . . . bn) = m(a1a2 . . . an, b1b2 . . . bn) − pr(a1a2 . . . an, b1b2 . . . bn),
Ml(a1a2 . . . an, b1b2 . . . bn) = m(a1a2 . . . an, b1b2 . . . bn) − pl(a1a2 . . . an, b1b2 . . . bn),
M(a1a2 . . . an, b1b2 . . . bn) = m(a1a2 . . . an, b1b2 . . . bn) − p(a1a2 . . . an, b1b2 . . . bn)

as the measures of proper similarity.
The number dH(a1a2 . . . an, b1b2 . . . bn) = |{i ≤ n : ai , bi}| is the Hamming distance

between decompositions and it is another type of penalty. We have that

p(a1 . . . an, b1 . . . bn) ≤ dH(a1 . . . an, b1 . . . bn).

The assertions from the following theorem establish the main results.

Theorem 3.3.1. Let a and b be two non-empty strings, a = a1a2 . . . an and b = b1b2 . . . bn

be the initial optimal decompositions, and a = a′1a′2 . . . a
′
q and b = b′1b′2 . . . b

′
q be the second

decompositions, which are arbitrary. Denote by
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m = m(a1a2 . . . an, b1b2 . . . bn), m′ = m(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q),

p = p(a1a2 . . . an, b1b2 . . . bn), p′ = p(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q),

pl = pl(a1a2 . . . an, b1b2 . . . bn), p′l = pl(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q),

pr = pr(a1a2 . . . an, b1b2 . . . bn), p′r = pr(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q),

r = dH(a1a2 . . . an, b1b2 . . . bn), r′ = dH(a′1a′2 . . . a
′
q, b
′
1b′2 . . . b

′
q),

M = m − p, M′ = m′ − p′, Ml = m − pl , M′l = m′ − p′l , Mr = m − pr , M′r = m′ − p′r .
The following assertions are true:

1. p′ − p = 2(m′ − m) + 2(r′ − r).

2. If the second decompositions are non optimal, then Ml > M′l and Mr > M′r .

3. If the second decompositions are optimal, then Ml = M′l and Mr = M′r and the measures Ml

and Mr are constant on the set of optimal parallel decompositions.

4. If m′ ≥ m and the second decompositions are non optimal, then p′ > p, pl′ > pl , p′r > pr

and M > M′.

5. If m′ = m and the second decompositions are optimal, then p′ = p, pl′ = pl , p′r = pr and
M′ = M .

6. If m′ ≤ m and the second decompositions are non optimal, then m′ − r′ < m − r .

From Assertions of Theorem 3.3.1 it follows that on the class of all optimal decompositions
of given two strings:

- the maximal measure of proper similarity is attained on the optimal parallel decomposition
with minimal penalties (minimal measure of similarity);

- the minimal measure of proper similarity is attained on the optimal parallel decomposition
with maximal penalties (maximal measure of similarity).

For any two non-empty strings there are parallel decompositions with maximal measure of
similarity and optimal decompositions on which the measure of similarity is minimal.

We present below an example that illustrates the relations on proper similarities and penalties
implied by Assertion 4 of Theorem 3.3.1.

Example 3.3.1. Let a = AAAACCC, b = CCCBBBB be two strings with a and b being their trivial
optimal decompositions, and a′ = AAAACCCεεεε, b′ = εεεεCCCBBBB as their non-optimal
decompositions. Then m′ = 3, r′ = 8, p′ = 8,m = 0, r = 7, and p = 0. In this example we have
that −5 = m′ − r′ > m − r = −7 and −5 = m′ − p′ = M′ < M = m − p = 0.

The following example shows that there are some exotic non-optimal parallel decompositions
a = a′1a′2 · · · a

′
q and b = b′1b′2 · · · b

′
q, such that for optimal decompositions a = a1a2 · · · an and

b = b1b2 · · · bn we have m′ < m, p′ < p, and M′ > M .
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Example 3.3.2. Let ABCDEF and CDEFED be trivial non-optimal decompositions of strings
a, b and ABCDEFεε, εεCDEFED be their optimal decompositions. Then m′ = 1, r′ = 5, p′ = 0,
m = 4, r = 4, and p = 4. We have that m′ − p′ = M′ > M = m − p, and m′ − r′ < m − r .

The above examples show that Theorem 3.3.1 cannot be improved in the case of m′ < m.
Decompositions with minimal penalty and maximal proper similarity are of significant inter-

est. Moreover, if we solve the problem of text editing and correction, the optimal decompositions
are more favorable. Therefore, the optimal decompositions are the best parallel decompositions
and we may solve the string match problems only on class of optimal decompositions.

In virtue of Theorem 3.3.1, various applications of distances on monoids of strings can be
used in solving problems from distinct scientific fields. As an example, the study of the measure
of proper similarity is approached from a new perspective.
Remark 3.5.1. Our algorithms are effective for any quasi-metric on Ā. Some authors consider the
possibility to define the generalized Levenshtein metric with distinct values ρ(a, b) and ρ(b, a). It is
necessary to require that ρ(a, b) is a quasi-metric. In other cases we may obtain some confusions
as will be seen from the next example.

Example 3.5.4. Let A = {a, b}, Ā = {ε, a, b}. The following table defines the distance ρ on Ā:

0 0 1 ε

1 0 0 a
0 1 0 b
ε a b y

x

In this example we have 0 = ρ(a, b) + ρ(b, ε) < ρ(a, ε) = 1 and:
1. for u = aba, v = ba we get ρ̄(u, v) = ρ̄(v, u) = 0,
2. for u = a, v = b we get ρ̄(u, v) = ρ̄(v, u) = 0, when ρ(v, u) = 1.

Example 3.5.5. Let us examine the example from [37] in the context of the results achieved. We
have strings a = AJCJNRCKCRBP and b = ABCN JROCLCRPM for which there are eight
pairs of optimal decompositions. We present two of them, the shortest and the longest:(

A

A

)
J

B

(
C

C

)
ε

N

(
J

J

)
N R

R O

(
C

C

)
K

L

(
C R

C R

)
B P

P M

(
A

A

)
J

B

(
C

C

)
J

ε

(
N

N

)
ε

J

(
R

R

)
ε

O

(
C

C

)
K

L

(
C R

C R

)
B

ε

(
P

P

)
ε

M

For the first pair we have ρ∗ = 7, m = 6, p = 1, and M = 5. For the second pair we have
ρ∗ = 7, m = 8, p = 5, and M = 3. Our algorithms allow us to calculate all optimal decompositions
with distinct measure of similarity. Authors from [37] prefer the second pair of decomposition
since it has maximal possible measure of similarity. We consider more preferable the first pair,
which has the maximal proper similarity.
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In fact, for any two non-empty strings there exist the parallel decompositions with maximal
measure of similarity and the optimal decompositions on which measure of similarity is minimal.
The following example shows that there exist some exotic non optimal parallel decompositions
a = a′1a′2 · · · a

′
q and b = b′1b′2 · · · b

′
q, such that for optimal decompositions a = a1a2 · · · an and

b = b1b2 · · · bn we have m′ < m, p′ < p and M′ > M .

Example 3.5.6. Let a = ABCDEF and b = CDEFED be trivial non optimal decompositions of
strings a, b, and a = ABCDEFεε and b = εεCDEFED be their optimal decompositions. Then
m′ = 1, r′ = 5, p′ = p′l = p′r = 0 and m = 4, r = 4, p = 4, pl = pr = 2. In this example we have that
M′l = M′r = M′ = m′ − p′ = 1 − 0 = 1 > 0 = 4 − 4 = m − p = M , m′ − r′ = −4 < 0 = m − r , Ml =
4 − 2 = 2 > 1 = M′l , Mr = 4 − 2 = 2 > 1 = M′r .

Example 3.5.7. Let a = AAAACCC and b = CCCBBBB be trivial optimal decompositions of
strings a, b, and a = AAAACCCεεεε and b = εεεεCCCBBBB be their non-optimal decomposi-
tions. Then m′ = 3, r′ = 8, p′ = 8 and m = 0, r = 7, p = pl = pr = 0. In this example we have that
−5 = m′ − r′ > m − r = −7 and −5 = m′ − p′ < m − p = 0.

The above examples show that Theorem 3.3.1 cannot be improved in the case of m′ < m.
The examined properties and the results obtained in this chapter are published in the articles
[46, 47, 51, 55, 56, 57, 62, 63] and serve as a foundation for the next chapter. The mentioned results
can also be applied in various problems related to similarity between sequences of characters.

Chapter 4, Geometrical and topological aspects of information analysis, is the final
chapter of the thesis, and focuses on the applicative part of the theoretical results obtained in
previous chapter. More specifically, the problem of constructing the weighted means and the
bisector sets of a pair of strings is solved in this chapter. This result relies strongly on the properties
of the parallel optimal decompositions. It is proved that any element of the set of the weighted
means is generated by some parallel optimal decompositions. This strong property, as well as its
converse, are summarized in the following two theorems.

Theorem 4.1.1. Any fixed parallel d-optimal decompositions of a pair given strings a, b ∈ L(A)

generate weighted means, simultaneously with their equivalent representations, which form parallel
d-optimal decompositions with the fixed representations of the given strings.

Corolarry 4.1.1. Any weighted mean of a fixed pair of strings is generated by some of their optimal
parallel decompositions.

As a special case, when dG (Graev distance) is discrete metric and dG(a, b) is an even number,
the weighted mean equally distant from the strigns a and b is the median of the segment with ends
in a and b. The algorithm for constructing the medians of a pair strings is presented below.

The chapter continues with the study of the question of the convexity of the set of the weighted
means. The theorems that follow, approach this questions using Hamming and Graev distances.
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Algorithm 5:Medians of OPD of x and y:
Given x, y ∈ L(Ā) construct m ∈ L(Ā), s.t. d∗(x,m) = d∗(m, y).
Data: x = x1x2 . . . xn, y = y1y2 . . . ym.
Result: Set M of median strings m.

1 d := d∗(x, y);
2 if d is odd then
3 return "distance d∗(x, y) is odd, set M is an empty set."
// Generate Optimal Parallel Decompositions of strings x,y

4 OPD(x, y) := BuildOPD(x,y);
5 I = {i : 1 ≤ i ≤ l∗(x′)};
6 foreach (x′, y′) ∈ OPD(x, y) do
7 I1 = {i : x′i = y′i };
8 I2 = I \ I1;
9 foreach I3 = Choose (|I | − d)/2 elements from I2 do

10 m := m1m2 . . .m|I |, where mi=

{
x′i, i ∈ I1 ∪ I3

y′i, otherwise.
11 M := M ∪ {m};
12 return M;

Question 1. Is it true that the set MdH (a, b) is dH-convex in (L∗(A), dH) for any a, b ∈ L∗(A)?
Question 2. Is it true that the set MdG (a, b) is dG-convex in (L∗(A), dG) for any a, b ∈ L∗(A)?

Theorem 4.2.1. The set MdH (a, b) is dH-convex in (L∗(A), dH) for any a, b ∈ L∗(A).

Theorem 4.2.2. There exists a finite alphabet A and two strings a, b ∈ L(A) for which the set
MdG (a, b) is not dG-convex.

The following example shows such strings a, b ∈ L(A) for which MdG (a, b) is not dG-convex.

Example 4.2.5. Let A = {B,C,D, J,K, L, M, N,O, P,Q, R},

a = DJCJNRCKCRBP, b = DBCN JROCLCRPM ,
a′ = DJCN JNRCKCRBP, b′ = DBCJN JROCLCRBPM ,

c = DJCJN JNROCKCRBPM , m = QQQQQQQQ.

Consider the strings amb, bma, a′ma′, b′mb′ and cmc. We obtain the following:

dG(amb, bma) = 14, dG(amb, a′ma′) = dG(a′ma′, bma) = 7,
dG(amb, b′mb′) = dG(b′mb′, bma) = 7, dG(a′ma′, b′mb′) = 12,

dG(a′ma′, cmc) = dG(cmc, b′mb′) = 6, dG(amb, cmc) = dG(cmc, bma) = 9.

Hence a′ma′, b′mb′ are from the middle of the segment MdG (amb, bma), the string cmc is from the
middle of the segment MdG (a

′ma′, b′mb′), but cmc < MdG (amb, bma).

The chapter continues with the theorem about the methods of construction of the elements of
the bisector set of two strings, i.e. the strings which are equally distant from a and b.
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Theorem 4.3.1. Let a = a1a2...an and b= b1b2...bn be two strings from L∗(A). There exist methods
to construct elements c = c1c2...cn ∈ B̄dH (a, b).

The chapter concludes with the study of the image processing methods using the notions
of scattered and digital spaces. One of the results of this study establishes that the Khalimsky
topology is the minimal digital topology in the class of all symmetrical topologies on the discrete
line Z. We say that the topology T on Z is symmetric if (Z, T) is a scattered Alexandroff space, the
set {0} is not open in (Z, T) and for any n ∈ Z the mapping Sn : Z→ Z, where Sn(x) = 2n − x for
each x ∈ Z, is a homeomorphism.

It is well known that distinct algebraic and topological structures have been introduced to
accommodate the needs of information theories. In the process of studying of the continuous
objects by the computer methods, they are approximated by finite objects or by digital images
[1, 9, 11, 56, 30, 38, 39, 41].

Digital image processing is a process which from a topological point of viewmay be described
in the following way:

1. Fix an infinite space X (a continuous image of the original) and a property P of subspaces
of the space X .

2. By some procedure we construct a number n ∈ ω, a finite subset H = {hi : i ∈ ω(n)} ⊂ Z

of levels and a finite family {Gi : i ∈ ω(n)} of open non-empty subsets of the space X with the
properties:

- Gi ∩ Gk = ∅ for all 0 ≤ i < k ≤ n;
- for any i ∈ ω(n) and each x ∈ Gi there exists an open subset G(x) such that x ∈ G(x) ⊂ Gi

and G(x) is a subset with the property P in X;
- the set G = {Gi : i ∈ ω(n)} is dense in X .
The set G is the P-kernel and X \ G is the P-residue of the space X .
3. The intensity mapping IP : X → ω ⊆ H is determined with the property: IP(x) =

maximal{hi : x ∈ clXGi} for each x ∈ X . We have Gi ⊂ I−1
P
(hi) for each i ∈ ω(n).

4. On H is determined a digital topology for which the mapping IP is continuous.
5. By some procedure we construct a finite T0-space K and for any x ∈ X we determine a

non-empty subset DP(x) of K such that:
- for any c ∈ K the set X(c) = {x ∈ X : c ∈ DP(x)} is closed and is called a P-cell of X;
- for any c ∈ K there exist i ∈ ω(n) and an open non-empty subset X′(c) ⊂ Gi such that X(c)

= clX X′(c).
The results of the research presented in this chapter, along with the results discussed in the

previous chapters fully cover the research goals stated in the first chapter. The results from this
chapter are published in the articles [49, 50, 60, 61] and can be applied in the study of various
theoretical as well as practical problems.
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4. GENERAL CONCLUSIONS

The research carried out within the Ph.D. thesis "Distances on Free Monoids and Their
Applications in Theory of Information" fully corresponds to the goals and the objectives set out in
the introduction chapter.

The study of the results obtained permit to highlight the following general results:
1. It was established that for any non-Burnside quasivariety V and any quasi-metric ρ on a set X

with basepoint pX on free monoid Fa(X,V) there exists a unique stable quasi-metric ρ̂ with
the properties:
(a) ρ(x, y) = ρ̂(x, y) for all x, y ∈ X;
(b) If d is an invariant quasi-metric on Fa(X,V) and d(x, y) ≤ ρ(x, y) for all x, y ∈ X , then

d(x, y) ≤ ρ̂(x, y) for all x, y ∈ Fa(X,V);
(c) If ρ is a metric, then ρ̂ is a metric as well;
(d) If Y ⊆ X , d = ρ|Y and d̂ is the maximal invariant extension of d on Fa(Y,V), then

Fa(Y,V) ⊆ Fa(X,V) and d̂ = ρ̂|Fa(Y,V);
(e) For any quasi-metric ρ on X and any points a, b ∈ Fa(X,V) there exists n ∈ N and

representations a = a1a2...an, b = b1b2...bn, such that a1, b1, a2, b2, ..., an, bn ∈ X and
ρ̂(a, b) =

∑
{ρ(ai, bi) : i ≤ n}. [62]

2. The method of extension of quasi-metrics on free monoids in the complete non-Burnside
quasivariety of topological monoids permit: to construct distinct admissible topologies of
Fa(X,V) for any T0-space X , to prove that the free topological monoid Fa(X,V) exists for
any space X , to establish that the free topological monoid F(X,V) is abstract free, i.e. is
canonically isomorphic with the abstract free monoid Fa(X,V) [54, 57, 62].

This fact solves problems posed by A. I. Maltsev for free universal topological algebras [33].
Similar results were obtained for quasivarieties of semi-topological monoids as well [62].

3. It was proved that if V is a complete non-Burnside quasivariety of topological monoids, then
X is an Alexandroff space if and only if F(X,V) is an Alexandroff space, and X is a digital
space if and only if F(X,V) is a digital space [61].

We mention that conclusions 1, 2 and 3 do not hold for complete Burnside quasivarieties.

4. Based on distance extension methods, the notions of parallel decompositions and the measure
of similarity were introduced in the space of strings [63]. Theorem describes the relationships
betweenmeasure of similarity, penalty and optimality of parallel decompositions [56, 58, 59].

5. Different interesting relations between Hamming, Levenshtein and Graev distances were
established on L(A) [46, 47, 48, 55].

6. It was proved that on the class of all optimal decompositions of given two strings the maximal
measure of proper similarity is attained on the optimal parallel decomposition with minimal
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penalties (minimal measure of similarity), and the minimal measure of proper similarity is
attained on the optimal parallel decomposition with maximal penalties (maximal measure of
similarity) [51, 63].

7. Algorithms were proposed for constructing the elements of the sets of weighted means
MdG (a, b) and bisector BdG (a, b) of a given pair of strings a and b [49, 64]. It was illustrated
how to use optimal parallel decompositions to generate elements of MdG (a, b), BdG (a, b), and
the set of midpoints between a and b [50, 53, 64].

8. It was proved that any weighted mean of a pair of strings is generated by some of their optimal
parallel decompositions [64]. It was also proved that the set MdG (a, b) is not convex [52].

9. Algorithms for digital image processing were elaborated using the properties of scattered and
digital topologies, and it was established that the Khalimsky topology is the minimal digital
topology in the class of all symmetrical topologies on the discrete line Z [60, 61, 65].

Advantages and value of thesis results. The proposed elaborations have a significant
scientific value due to their high degree of novelty and originality. The scientific results in this
thesis have a theoretical and applicative value in domains of algebra, topology and theoretical
computer science. For example, the methods of extensions of pseudo-quasimetrics that can be used
for construction of special topologies on free monoids. The methods of parallel decompositions,
measure of similarity, efficiency and penalty can be applied in text analysis problems.

Recommendations. The results obtained can be used in various fields and may have prac-
tical applications in algebra and theory of information. Based on the above conclusions, we
recommended the following:

• there is a special interest in investigating quasimetrics on the space of free monoids, as
extensions of quasimetrics with particular properties on an alphabet. For instance, as it was
proved, quasimetrics are strictly invariant on rigid quasivarieties. This is usual for groups,
but it is very rare for semigroups and monoids;

• the results research can be continued both from algebraic and applicative points of view.
Researching metrics on monoids is of particular interest;

• the results obtained with optimal parallel decompositions can be used in the domain of
sequences alignment;

• the new algorithm proposed for weighted means construction can be more effective because
it takes into consideration the empty symbol, and generates more elements of the MdG set
than the classical algorithms. This fact, in its turn, can be useful in the context of information
communication through the channel with noise, or text editing/correction software, where
the loss of information takes place;

• algorithms for generating weighted means and bisectors of strings can be applied in the
domain of data analysis and clustering algorithms. For instance, the geometrical centroid of
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a set of elements can be calculated as the intersection of the bisectors of elements;

• further research can be continued with the study of algorithms and properties of optimal
parallel decompositions of three and more strings;

• thesis contents can serve as a platform for university facultative and optional courses.
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ANNOTATION
of the thesis "Distances on Free Monoids s, i Their Applications in Theory of Information",
submitted by Budanaev Ivan for Ph.D. degree in Mathematics, specialty 111.03 - Mathematical
Logic, Algebra s, i Number Theory.

The thesis was elaborated in Moldova State University "Dimitrie Cantemir", Chişinău, 2019.
Thesis structure: the thesis is written in English s, i consists of: introduction, four chapters,

general conclusions s, i recommendations, 200 bibliography titles, 116 pages of main text. The
obtained results were published in 20 scientific papers.

Keywords: Alexandroff space, quasivariety of topological monoids, free monoids, invariant
distance, quasi-metric, Levenshtein distance, Hamming distance, Graev distance, parallel decom-
position, proper similarity, weighted mean, bisector of two strings, convexity, algorithm.

Domain of research: Distances on abstract algebraic structures.
Goals s, i objectives: The goal of the research is to study the problem of distances on free

monoids. To achieve this goal, the following objectives were defined: elaboration of an effective
method for extending the quasi-metric on free monoids; development of efficient representations of
information for data analysis; implementation of innovative algorithms for solving text sequences
problems; describe digital topologies on the discrete line.

The scientific novelty s, i originality consist in obtaining new theoretical results with ap-
plications in computer science. An effective method of distance extension on free monoids was
developed, which helped to introduce the concept of parallel representation of information. This
has allowed the development of the concepts of efficiency s, i similarity of the representation of
information sequences, as well as the construction of the sets of weighted mean s, i bisector of
strings.

The important scientific problem solved in the research is the development of methods
for constructing and studying distances on free monoids, which contribute to obtaining effective
methods of representing information, applicable to solving different distance problems.

The theoretical significance is determined by the obtaining of the new results regarding
the establishment of the conditions of existence of the extension of the distance on free monoids.
The elaborated methods have allowed to approach the problems related to information sequences
from a new point of view. New algorithms of constructing strings weighted mean s, i bisector were
proposed. It has been established that the informational segment is not convex.

The applicative value of the paper consists in the use of the obtained theoretical results in
the study of symmetric topologies on the digital line, imaging processing s, i construction of the
centroid of a set of strings.

The implementation of the scientific results. The obtained results can be used in scientific
research related to data analysis, the study of the efficiency of information representation, digital
image processing. They can also be used in development of an optional course for university
students related to the study of distances on abstract algebraic structures.
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ADNOTARE
la teza "Distanţe pe Monoizi Liberi şi Aplicaţiile lor în Teoria Informaţiei",

înaintată de către Budanaev Ivan pentru obţinerea titlului de doctor în ştiinţe matematice la spe-
cialitatea 111.03 - Logică Matematică, Algebră şi Teoria Numerelor.

Teza a fost elaborată la Universitatea de Stat "Dimitrie Cantemir", Chişinău, anul 2019.
Structura tezei: teza este scrisă în limba engleză şi conţine introducere, patru capitole,

concluzii generale şi recomandări, 200 titluri bibliografice, 116 pagini de text de bază. Rezultatele
obţinute sunt publicate în 20 lucrări ştiinţifice.

Cuvinte cheie: Spaţiul Alexandrov, cvasivarietate de monoizi topologici, monoizi liberi,
distanţă invariantă, cvasimetrică, distanţa Levenshtein, distanţa Hamming, distanţa Graev, descom-
punere paralelă, similaritate proprie, medie ponderată, bisectoare a două stringuri, convexitate,
algoritm.

Domeniul de studiu al tezei: Distanţe pe structuri algebrice abstracte.
Scopul şi obiectivele lucrării. Scopul cercetării constă în studiul problemei extinderei

distanţelor pe monoizi liberi. Pentru atingerea acestui scop au fost definite următoarele obiec-
tive: elaborarea unei metode eficiente de extindere a cvasimetricei pe monoizi liberi; dezvoltarea
reprezentărilor eficiente a informaţiei pentru analiza datelor; implementarea algoritmilor inovativi
pentru rezolvarea problemelor secvenţelor de text; descrierea topologiei digitale pe dreapta discretă.

Noutatea şi originalitatea ştiinţifică constau în obţinerea rezultatelor noi de ordin teoretic
cu aplicaţii în informatică. A fost elaborată o metodă efectivă de extindere a distanţelor pe
monoizi liberi, graţie căreia a fost introdus conceptul de descompunere paralelă a informaţiei.
Această a permis dezvoltarea conceptelor de eficienţă şi similaritate a reprezentărei secvenţelor
informaţionale, la fel şi construcţia mulţimelor de medii ponderate şi bisectoare a stringurilor.

Problema ştiinţifică importantă soluţioantă constă în elaborarea metodelor de construire
s, i studiere a distanţelor pe monoizi liberi, care contribuie la obţinerea metodelor efective de
reprezentare a informaţiei, aplicabile la soluţionarea diferitor probleme referitor la distanţe.

Semnificaţia teoretică este determinată de obţinerea rezultatelor noi ce ţin de stabilirea
condiţiilor de existenţă a extinderii distanţei pe monoizi liberi. Metodele elaborate au permis
abordarea problemelor legate de secvenţe de informaţie dintr-un nou punct de vedere. Au fost
propuşi algoritmi de construcţie a mediilor ponderate şi bisectoarei a perechilor de stringuri. S-a
stabilit că segmentul informaţional nu este convex.

Valoarea aplicativă a tezei constă in utilizarea rezultatelor teoretice obţinute la studiul
topologiilor simetrice pe dreapta digitală, procesarea imaginelor şi construcţia centrului de greutate
a mulţimei de stringuri.

Implementarea rezultatelor ştiinţifice. Rezultatele obţinute pot fi utilizate in cercetări
ştiinţifice ce ţin de analiza datelor, studierea eficienţei reprezentării a informaţiei, procesarea
digitală a imaginelor. De asemenea, ele pot servi drept suport pentru cursuri universitare opţionale.
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АННОТАЦИЯ

диссертации “Расстояния на свободных моноидах и их приложения в теории информации”,
представленной Иваном Буданаевым на соискание учёной степени доктора математических наук по
специальности 111.03 – Математическая Логика, Алгебра и Теория Чисел. Диссертация выполнена
в Государственном Университете “Димитрие Кантемир”, Кишинёв, 2019 год.

Структура работы: Диссертация написана на английском языке и содержит введение, четыре
главы, заключение с рекомендациями, 200 библиографических названия, 116 страниц оцновного
текста. Полученные результаты были опубликованы в 20 научных работах.

Ключевые слова: Пространство Александрова, свободные моноиды, инвариантное расстоя-
ние, квазиметрика, расстояния Левенштейна, Хэмминга и Граева, параллельное разложение, над-
лежащее сходство, взвешенное среднее, биссектриса двух строк, выпуклость, алгоритм.

Область исследования: Расстояния на абстрактных алгебраических структурах.
Цель исследования является изучение проблемы расстояний на свободных моноидах, для

достижение которого определены следующие задачи: разработка эффективного метода продолже-
ния квазиметрики на свободные моноиды; разработка эффективных представлений информации
для анализа данных; внедрение инновационных алгоритмов для решения задач текстовых последо-
вательностей; описание цифровых топологии на дискретной прямой.

Научная новизна и оригинальность заключаются в получении новых теоретических резуль-
татов с приложениями в информатике. Разработан эффективный метод продолжения расстояний на
свободных моноидах, который позволил ввести концепцию параллельного представления информа-
ции, эффективности и сопоставимости информационных последовательностей, а также построить
множества взвешенного среднего и биссектрисы строк.

Важной научной задачей, решаемой в исследовании, является разработкаметодов построе-
ния и исследования расстояний на свободных моноидах, которые способствуют получению эффек-
тивных методов представления информации, применимых для решения задач с расстояниями.

Теоретическая значимость определяется получением новых результатов, касающихся уста-
новления условий существования продолжения расстояний на свободных моноидах. Разработанные
методы позволили подойти к проблемам, связанным с информационными последовательностями,
с новой точки зрения. Предложены новые алгоритмы построения взвешенного среднего и биссек-
трисы строк. Установлено, что информационный сегмент не является выпуклым.

Прикладная ценность работы заключается в использовании полученных теоретических ре-
зультатов при исследовании симметричных топологий на цифровой прямой, обработке изображений
и построении центроида множества строк.

Реализация научных результатов. Полученные результаты могут быть использованы в на-
учных исследованиях, связанных с анализом данных, изучением эффективности представления
информации, цифровой обработкой изображений. Они также могут быть использованы при разра-
ботке факультативного курса для студентов университетов, связанного с изучением расстояний на
абстрактных алгебраических структурах.
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